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ABSTRACT 

If the solution of a deterministic equation is stochastic (in the 

sense of orbital instability), it can be subjected to a statistical 

analys·is. This is illustrated for a coded orbit of the Chirikov map­

ping. Statistical dependence and the Markov assumption are tested. The 

Kolmogorov-Sinai entropy is related to the probability distribution for 

the orbit. 

The idea that a deterministic equation can have a solution with 

random properties has encountered understandable resistance in the 

physics community. Our gradual acceptance of this idea is due in large 

part to the pioneering expositions of Chirikov 1 and of Ford, 2 who 

explained the concepts of the mathematicians, and presented numerical 

experiments and relatively simple analytic formulations. Most recently, 

a deeper understanding has come about from the studies of Shimada, 3 

who performed a statistical analysis of a solution of the lorenz 

equations. 

In this paper, we devote ourselves to applying some standard methods 

of statistical analysis to a single numerical solution of a determin-

istic system that arises in several guises in plasma physics as well as 

in other applications. This is the Chirikov "standard mapping" 1 

*Work supported by U. S. Department of Energy, Office of Fusion Energy, 
under contract W-7405-ENG-48. 
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(mod 1) 
"' e + I l n n+ 

which is area-preserving~ and depends on the single parameter K. By a 

"solution," we mean the set {In• en} (n = 0, 1, 2, .•• ) for some 

chosen value of K and some initial condition (I 0 ~ e
0

). It is known 

from numerical evidence 1 that forK~ 5 and for most initial condi-

tions, the solution is "stochastic;" i.e •• solutions with neighboring 

initial conditions diverge exponentially with n, at a rate given by the 

4 K Lyapunov characteristic exponent A ~ tn 2 . For stochastic solu-

tions, the statistical properties we shall study are insensitive to 

numerical roundoff errors. since the latter cannot compete against the 

t . t. 5 exponen 1a 1on. 

We begin by coarse-graining (or 11 partitioning11
) the phase-space 

(0 <I < 1, 0 ~ e < 1). In practice, we simply take each In• calcu­

lated with reasonable precision, say 15 = .8279643 ••• , and discard all 

but its first digit; i.e., we have 15 -+ 8 (ignoring the decimal 

point). Thus the numerical solution, {In' en}~ is replaced by a 

sequence of digits, e.g., 3, 7, 4, 1, 5, 8, 6, 2, ••. ;the nth digit 

labels which of ten strips in phase-space is occupied by the solution at 

the nth iteration of the mapping. This sequence is called the 

11 coded" solution or the "symbolic orbit. 11 

We now look for aspects5 of randomness among this sequence of 

digits. First we evaluate P(a), the relative frequency of the digit~· 

for each a"' 0,1 •...• 9. For an ergodic orbit, we expect P(a) = 0.1, for 

each a. This is indeed found to be true~ for a stochastic solution. 
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Next, we examine P (a,b}, the relative frequency of the digit a m -
followed~ iterations later by the digit£. If there were no short-

range order in the set of digits, we would have Pm(a, b) = P(a)P(b) = 

0.01. Statistical dependence is revealed by the ratio 

Pm(a,b)/P(a)P(b) departing from one. In Figure 1, we consider this 

ratio forb= 1, and for a= 0,1, ... ,9. For each~· we plot the maximum 

and minimum with respect to a of this ratio. We see that the ratio 

approaches one, as ~ increases, indicating statistical independence 

after sufficiently many iterations. (The error-bar represents a naive 

estimate of the expected fluctuation in the measured ratio resulting 

from the finite number of iterations.) For higher K, the orbit is more 

stochastic (larger Lyapunov exponent), so statistical independence is 

achieved more rapidly. 

A frequently-made assumption about a stochastic process is the 

Markov property, namely that the conditional probability P (c;b,a) m 

[probability of~. given that£ appeared~ steps earlier, and that a 

appeared~ further steps earlier] is independent of the earlier value 

a. For Figure 2. we choose c = 3, b ~ 5, and plot the maximum and 

minimum with respect to a of the ratio Pm(c;b,a)/Pm(c;b). We see 

non-Markovian behavior for m < 5, but for m ? 5, the Markov assumption 

appears valid, 

Considering now only m = 1. we examine the sequence of joint prob-

abilities P(a) = 0.1, P(a,b), P(a,b,c). P(a,b,c,d), ...• which represent 

the short-range order of the coded solution. For each P, we can eval­

uate the corresponding Gibbs-Shannon entropy Sn =- ~I P~n P, where n 

is here the number of successive digits in the argument of P. 
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(Thus S lies between zero, for perfect order~ and £n 10, for complete 
n 

disorder.) As n increases, Sn rapidly approaches (from above) an 

asymptotic value S
00

• The latter still depends strongly on the coarse-

graining scheme used, of which ours is an arbitrary one. In particular, 

it depends on the number of cells (in our case, 10) in the partition of 

phase space. As this number is increased, so does S ; remarkably, it 
00 

has a finite limit, which is called the Kolmogorov-Sinai entropy,6 and 

this limit is numerically equal to the Lyapunov exponent4 averaged 

over initial conditions. This agreement has been verified by Shimada3 

for the lorenz model; our attempts to verify similar agreement for the 

Chirikov mapping have so far been limited by computer time. 

The resul we have obtained appear to be consistent with the mathe­

matical ideas expressed by Sinai 5• However, no quantitative theory 

exists as yet, to our knowledge. We encourage our colleagues to develop 

such a theory. 

We are indebted to Oscar Manley for providing us with a translation 

of Sinai 1 S review, and to Oscar Lanford for providing us with mathe-

matical advice. 
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